Series OSR/C

कोड नं. 56/1 Code No.

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 12 हैं ।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 30 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 12 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **30** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

56/1 1 P.T.O.

सामान्य निर्देश:

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) प्रश्न-संख्या 1 से 8 तक अति लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 1 अंक है ।
- (iii) प्रश्न-संख्या 9 से 18 तक लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (iv) प्रश्न-संख्या 19 से 27 तक भी लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 3 अंक हैं ।
- (v) प्रश्न-संख्या 28 से 30 तक दीर्घ-उत्तरीय प्रश्न हैं। प्रत्येक प्रश्न के लिए 5 अंक हैं।
- (vi) आवश्यकतानुसार लॉग टेबलों का प्रयोग करें । कैल्कुलेटरों के उपयोग की अनुमित **नहीं** है ।

General Instructions:

- (i) **All** questions are compulsory.
- (ii) Questions number 1 to 8 are very short-answer questions and carry 1 mark each.
- (iii) Questions number **9** to **18** are short-answer questions and carry **2** marks each.
- (iv) Questions number 19 to 27 are also short-answer questions and carry 3 marks each.
- (v) Questions number **28** to **30** are long-answer questions and carry **5** marks each.
- (vi) Use Log Tables, if necessary. Use of calculators is **not** allowed.
- 1. क्रिस्टलीय ठोस विषमदैशिक क्यों होते हैं ? 1
 Why are crystalline solids anisotropic ?
- 2. इमल्शन क्या होते हैं ? एक ऐसे इमल्शन का नाम दीजिए जिसमें जल परिक्षेपण माध्यम का कार्य करता है ।

 What are emulsions ? Name an emulsion in which water is a dispersed phase.

56/1 2

3. फेन प्लवन प्रक्रम में प्रयुक्त संग्राही क्या होते हैं ? एक पदार्थ का नाम दीजिए जो इस प्रकार उपयोग में लाया जाता है ।

1

What are the collectors used in froth floatation process? Name a substance that can be used as such.

4. Cl_2 की अपेक्षा F_2 प्रबलतर उपचायक क्यों होता है ? 1 Why is F_2 a stronger oxidising agent than Cl_2 ?

5. उस ऐल्कोहॉल का नाम लिखिए जिसका निम्न एस्टर को बनाने में उपयोग किया जाता है : 1

$$\begin{array}{c} \mathrm{O} \\ \parallel \\ \mathrm{CH}_3 - \mathrm{C} - \mathrm{O} - \mathrm{CH} - \mathrm{CH}_3 \\ \mathrm{CH}_3 \end{array}$$

Name the alcohol that is used to make the following ester:

$$\begin{array}{c} \mathrm{O} \\ \parallel \\ \mathrm{CH}_3 - \mathrm{C} - \mathrm{O} - \mathrm{CH} - \mathrm{CH}_3 \\ \mathrm{CH}_3 \end{array}$$

- **6.** प्रोपैन-2-ओन और पेंटैन-3-ओन के बीच अंतर करने के लिए एक जाँच लिखिए।

 Give a test to distinguish between propan-2-one and pentan-3-one.
- 7. 'होमोपॉलीमर', 'कोपॉलीमर' से कैसे भिन्न होता है ?

 How does a homopolymer differ from a copolymer ?
- 8. 'पेप्टाइड लिंकेज' को परिभाषित कीजिए।

 Define a 'Peptide linkage'.
- 9. स्टैंडर्ड ड्राई सेल के लिए नेन्स्ट समीकरण को लिखिए। इस समीकरण का प्रयोग करते हुए यह दर्शाइए कि उपयोग करने के साथ शुष्क सेल की वोल्टता को घटना चाहिए। 2

 Set up Nernst equation for the standard dry cell. Using this equation show that the voltage of a dry cell has to decrease with use.

56/1 3 P.T.O.

10.	एक अभिक्रिया की दर पर तापमान परिवर्तन का क्या प्रभाव होता है ? अभिक्रिया के दर स्थिरांक पर इस प्रभाव को मात्रात्मक ढंग से कैसे प्रस्तुत किया जा सकता है ?					
	this	does a change in temperature affect the rate of a reaction? How can effect on the rate constant of a reaction be represented titatively?				
11.	1. निम्न प्रक्रमों में प्रत्येक के आधारमूल सिद्धान्त का वर्णन कीजिए :					
	(i)	NaCN विलयन के साथ सिल्वर अयस्क को निक्षालित करने से प्राप्त हुए विलयन से सिल्वर की पुनःप्राप्ति				
	(ii)	एक अशुद्ध धातु का विद्युत्-अपघटनी परिष्करण				
		अथवा				
	निम्न प्र	प्रक्रमों में प्रत्येक के पीछे जो कार्यकारी सिद्धान्त है उसका वर्णन कीजिए :	2			
	(i)	धातु का ज़ोन (मंडल) परिष्करण				
	(ii)	धातुओं की वाष्प प्रावस्था का परिष्करण				
	Describe the underlying principle of each of the following processes:					
	(i)	Recovery of silver from the solution obtained by leaching silver ore with a solution of NaCN				
	(ii)	Electrolytic refining of a crude metal				
		OR				
	Descr	ribe the principle involved in each of the following processes:				
	(i)	Zone refining of a metal				
	(ii)	Vapour phase refining of metals				
12.	निम्न र	ासायनिक समीकरणों को पूर्ण कीजिए :	2			
	(i)	$SO_2 + MnO_4^- + H_2O \rightarrow$				
	(ii)	$\mathrm{F_{2}}\left(\mathrm{g}\right) +\mathrm{H_{2}O}\left(l\right) \rightarrow$				
	Comp	plete the following chemical equations:				
	(i)	$SO_2 + MnO_4^- + H_2O \rightarrow$				
	(ii)	$\mathrm{F}_{2}\left(\mathrm{g}\right) +\mathrm{H}_{2}\mathrm{O}\left(l\right) \rightarrow$				

4

56/1

निम्नलिखित के कारण लिखिए: 13. 2 कॉपर(I) आयन का जलीय विलयनों में होना नहीं जाना जाता है। (i) O_2 और F_2 दोनों ही संक्रमण धातुओं की उच्च उपचयन अवस्थाओं को स्थिरता देती (ii) हैं परन्त उच्च उपचयन अवस्था को स्थिरता देने में ऑक्सीजन की क्षमता फ्लुओरीन से अधिक होती है। Assign reasons for the following: (i) Copper(I) ion is not known to exist in aqueous solutions. (ii) Both O₂ and F₂ stabilize high oxidation states of transition metals but the ability of oxygen to do so exceeds that of fluorine. निम्न यौगिकों के आई. यू. पी. ए. सी. (IUPAC) नामों को लिखिए: **14.** 2 (i) $CH_2 = CHCH_2Br$ (ii) (CCl₃)₃ CCl Write the IUPAC names of the following compounds: (i) $CH_2 = CHCH_2Br$ (CCl₃)₃ CCl (ii) उभयकारणी नाभिकस्नेही (ऐम्बिडेण्ट न्युक्लिओफाइल्स) क्या होते हैं ? एक उदाहरण के साथ **15.** स्पष्ट कीजिए । 2 What are ambident nucleophiles? Explain with an example. निम्न यौगिकों को क्षारक सामर्थ्य के बढते क्रम में व्यवस्थित कीजिए : 16. (i) C₆H₅NH₂, C₆H₅N(CH₃)₂, (C₂H₅)₂NH और CH₃NH₂ निम्न यौगिकों को pKh मानों के घटते क्रम में व्यवस्थित कीजिए : (ii) C₂H₅NH₂, C₆H₅NHCH₃, (C₂H₅)₂NH और C₆H₅NH₂ 2 (i) Arrange the following compounds in an increasing order of basic strength: C₆H₅NH₂, C₆H₅N(CH₃)₂, (C₂H₅)₂NH and CH₃NH₂ Arrange the following compounds in a decreasing order of pKb (ii)

56/1 5 P.T.O.

 $C_2H_5NH_2$, $C_6H_5NHCH_3$, $(C_2H_5)_2NH$ and $C_6H_5NH_2$

values:

2

3

3

- एथिलऐमीन और ऐनिलीन (i)
- ऐनिलीन और बेन्ज़िलऐमीन (ii)

Give a chemical test to distinguish between each of the following pairs of compounds:

- (i) Ethylamine and Aniline
- (ii) Aniline and Benzylamine
- निम्न बहलकों को प्राप्त करने के लिए जो एकलक उपयोग में लाए जाते हैं उनके नाम और 18. उनकी संरचनाएँ लिखिए:
 - बूना-S (i)
 - नाइलॉन-6, 6 (ii)

Write the names and structures of monomers used for getting the following polymers:

- Buna-S (i)
- (ii) Nylon-6, 6
- 286.65 pm किनारे (सेल) के विस्तार के साथ आयरन का काय केन्द्रित घनीय यूनिट सेल 19. है । आयरन का घनत्व $7.874~\mathrm{g~cm^{-3}}$ है । इस सूचना का उपयोग करते हुए ऐवोगैद्रो संख्या का परिकलन कीजिए । (Fe का ग्राम परमाण्विक द्रव्यमान = 55.84 g mol^{-1})

Iron has a body centred cubic unit cell with a cell dimension of 286.65 pm. The density of iron is 7.874 g cm⁻³. Use this information to calculate Avogadro's number (Gram atomic mass of Fe = 55.84 g mol⁻¹).

 25° C पर 0.01 M NaCl विलयन का प्रतिरोध $200~\Omega$ है । प्रयुक्त चालकता-सेल का सेल 20. स्थिरांक एक है। विलयन की मोलर चालकता परिकलित कीजिए।

The resistance of 0.01 M NaCl solution at 25° C is 200 Ω. The cell constant of the conductivity cell used is unity. Calculate the molar conductivity of the solution.

6

56/1

21. दो भिन्न-भिन्न तापमानों पर विघटन अभिक्रिया के लिए k के मान नीचे दिए गए हैं :

$$k_1 = 2.15 \times 10^{-8} \text{ L/(mol.s)}, 650 \text{ K} \text{ T}$$

$$k_2 = 2.39 \times 10^{-7} \text{ L/(mol.s)}, 700 \text{ K} \text{ पर}$$

अभिक्रिया के लिए Ea का मान परिकलित कीजिए।

$$(\text{Log } 11.11 = 1.046) \ (\text{R} = 8.314 \text{ J K}^{-1} \text{ mol}^{-1})$$

3

For a decomposition reaction, the values of k at two different temperatures are given below:

$$k_1 = 2.15 \times 10^{-8} \text{ L/(mol.s)}$$
 at 650 K

$$k_2 = 2.39 \times 10^{-7} \text{ L/(mol.s)}$$
 at 700 K

Calculate the value of E_a for the reaction.

$$(Log \ 11 \cdot 11 = 1 \cdot 046) \ (R = 8 \cdot 314 \ J \ K^{-1} \ mol^{-1})$$

22. उपयुक्त उदाहरण देते हुए व्याख्या कीजिए कि अधिशोषण के दो प्रकार के प्रक्रम (भौतिक व रासायनिक अधिशोषण) किस प्रकार तापमान, अधिशोषक के पृष्ठीय क्षेत्रफल और सक्रियण ऊर्जा के मान से प्रभावित होते हैं ?

3

3

अथवा

स्पष्ट रूप से व्याख्या कीजिए कि अधिशोषण की परिघटना निम्न में कैसे अनुप्रयोग पाती है :

- (i) एक बर्तन में निर्वात पैदा करने में
- (ii) विषमांगी उत्प्रेरण में
- (iii) धातुकर्म में फेन प्लवन प्रक्रम में

Giving appropriate examples, explain how the two types of processes of adsorption (physisorption and chemisorption) are influenced by the prevailing temperature, the surface area of adsorbent and the activation energy of the process?

OR

Explain clearly how the phenomenon of adsorption finds application in

- (i) production of vacuum in a vessel
- (ii) heterogeneous catalysis
- (iii) froth floatation process in metallurgy

56/1 7 P.T.O.

3

3

- संक्रमण धात्एँ दीर्घ परास में उपचयन अवस्थाएँ प्रदर्शित करती हैं। (i)
- कोबाल्ट(II) जलीय घोलों में बहुत स्थाई है परन्तु प्रबल लिगैण्डों की उपस्थिति में (ii) सरलता से उपचयित हो जाता है।
- लैन्थैनोयडों की अपेक्षा ऐक्टिनोयडें बृहत्तर परास में उपचयन अवस्थाएँ प्रदर्शित करते हैं। (iii)

Give reasons for the following:

- (i) Transition metals exhibit a wide range of oxidation states.
- (ii) Cobalt(II) is very stable in aqueous solutions but gets easily oxidised in the presence of strong ligands.
- (iii) Actinoids exhibit a greater range of oxidation states than lanthanoids.
- निम्न कॉम्प्लेक्स अवस्थाओं में प्रत्येक का IUPAC नाम लिखिए और प्रत्येक की संरचना 24. आरेखित कीजिए:

(i)
$$\left[C_0 \begin{pmatrix} COO \\ | \\ COO \end{pmatrix}_3 \right]^{3-}$$

- (ii) $[Cr(CO)_6]$
- $[PtCl_3(C_2H_4)]$ (iii)

(परमाण क्रमांक Cr = 25, Co = 27, Pt = 78)

Write the IUPAC name and draw the structure of each of the following complex entities:

(i)
$$\left[\text{Co} \left(\begin{array}{c} \text{COO} \\ | \\ \text{COO} \end{array} \right)_3 \right]^{3-}$$

- $[Cr(CO)_6]$ (ii)
- $[PtCl_3(C_2H_4)]$ (iii)

(At. nos. Cr = 25, Co = 27, Pt = 78)

- प्रत्येक के लिए एक-एक उदाहरण के साथ निम्न की व्याख्या कीजिए : 25.
 - कोल्बे की अभिक्रिया (i)
 - रीमर-टीमान अभिक्रिया (ii)
 - विलियम्सन ईथर संश्लेषण (iii)

Explain the following with an example for each:

(i) Kolbe's reaction

Get More Learning Materials Here:

- (ii) Reimer-Tiemann reaction
- (iii) Williamson ether synthesis

8

आवश्यक और अनावश्यक ऐमीनो अम्ल क्या होते हैं ? प्रत्येक के दो-दो उदाहरण दीजिए । **26.** What are essential and non-essential amino acids? Give two examples of each.

3

3

2, 3

3, 2

- निम्न पदों का क्या तात्पर्य होता है ? प्रत्येक को एक-एक उदाहरण सहित समझाइए । **27.**
 - औषधीय रसायन में उपयोगानुसार लक्ष्य अण् (i)
 - खाद्य परिरक्षक (ii)
 - अनायनिक (नॉन-आयनिक) अपमार्जक (iii)

What is meant by the following terms? Explain with an example for each.

- (i) Target molecules as used in medicinal chemistry
- (ii) Food preservatives
- (iii) Non-ionic detergents
- वैण्ट हॉफ कारक क्या होता है ? इसके मान किस प्रकार के होते हैं यदि विलयन के 28. (a) बनने में विलेय के अण्
 - विघटित होते हैं ? (i)
 - संगठित होते हैं ? (ii)
 - Na₂CO₃ और NaHCO₃ के 1 g मिश्रण में दोनों पदार्थों की समान मोलर मात्राएँ (b) मिली हुई हैं । इस मिश्रण के साथ पूर्ण रूप से अभिक्रिया करने के लिए 0·1 M HCl विलयन के कितने mL की आवश्यकता होगी ?

(मोलर द्रव्यमान : $Na_2CO_3 = 106 \text{ g}$, $NaHCO_3 = 84 \text{ g}$)

अथवा

- परिभाषा लिखिए: (a)
 - मोल प्रभांश (i)
 - मोललता (ii)
 - (iii) राउल्ट का नियम
- पूर्ण रूप से वियोजित मानते हुए, उस विलयन का प्रत्याशित हिमांक परिकलित (b) कीजिए जो $0.100~{
 m kg}$ जल में ग्लॉबर लवण (सज्जी), ${
 m Na_2SO_4.10~H_2O}$ के $6.00\,\mathrm{g}$ को घुलाने से बनाया गया हो । (जल के लिए $K_f = 1.86 \text{ K kg mol}^{-1}$, परमाणु द्रव्यमान : Na = 23, S = 32,

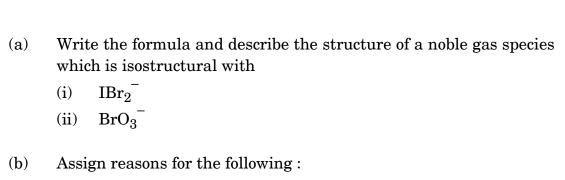
O = 16, H = 1

56/1 9 P.T.O.

- (a) What is van't Hoff factor? What types of values can it have if in forming the solution the solute molecules undergo
 - (i) Dissociation?
 - (ii) Association?
- (b) How many mL of a 0.1 M HCl solution are required to react completely with 1 g of a mixture of Na_2CO_3 and $NaHCO_3$ containing equimolar amounts of both?

(Molar mass : $Na_2CO_3 = 106 \text{ g}$, $NaHCO_3 = 84 \text{ g}$)

OR.


- (a) Define
 - (i) Mole fraction
 - (ii) Molality
 - (iii) Raoult's law
- (b) Assuming complete dissociation, calculate the expected freezing point of a solution prepared by dissolving 6.00 g of Glauber's salt, $Na_2SO_4.10~H_2O$ in 0.100 kg of water. (K_f for water = 1.86 K kg mol⁻¹, Atomic masses : Na = 23, S = 32, O = 16, H = 1)
- **29.** (a) उस उत्कृष्ट गैस स्पीशीज का सूत्र लिखिए और उसकी संरचना का वर्णन कीजिए जो निम्न के साथ समसंरचनात्मक हो :
 - (i) IBr_2
 - (ii) BrO₃
 - (b) निम्न के कारण लिखिए:
 - (i) SF₆ गतिकतः निष्क्रिय होता है।
 - (ii) NF3 एक ऊष्माक्षेपी यौगिक है जबिक NCl3 ऐसा नहीं है।
 - (iii) HF की अपेक्षा HCl प्रबलतर अम्ल है यद्यपि फ्लुओरीन क्लोरीन की अपेक्षा अधिक विद्युत्-ऋणात्मक है। 2, 3

अथवा

- (a) बड़े पैमाने पर अमोनिया कैसे बनाई जाती है ? उस प्रक्रम का नाम दीजिए और इस प्रक्रम द्वारा अमोनिया के उत्पादन के लिए अनुकूलतम परिस्थितियों का उल्लेख कीजिए।
- (b) निम्न के लिए कारण लिखिए:
 - (i) H_2O की अपेक्षा H_2S अधिक अम्लीय है ।
 - (ii) PH_3 की अपेक्षा NH_3 अधिक क्षारीय है ।
 - (iii) ऑक्सीजन की अपेक्षा सल्फर में शृंखलन की प्रवृत्ति अधिक है।

2, 3

56/1

- (i) SF₆ is kinetically inert.
- (ii) NF₃ is an exothermic compound whereas NCl₃ is not.
- (iii) HCl is a stronger acid than HF though fluorine is more electronegative than chlorine.

OR

- (a) How is ammonia prepared on a large scale? Name the process and mention the optimum conditions for the production of ammonia by this process.
- (b) Assign reasons for the following:
 - (i) H_2S is more acidic than H_2O .
 - (ii) NH₃ is more basic than PH₃.
 - (iii) Sulphur has a greater tendency for catenation than oxygen.
- **30.** (a) निम्न यौगिकों के IUPAC नाम लिखिए:
 - $(i) \qquad CH_3CO(CH_2)_4CH_3 \\$
 - (ii) Ph CH = CH CHO
 - (b) निम्न रूपांतरणों का वर्णन आप दो चरणों से अधिक नहीं में कैसे करेंगे :
 - (i) एथैनॉल को 3-हाइड्रॉक्सीब्यूटैनैल में
 - (ii) बेन्ज़ोइक अम्ल को m-नाइट्रोबेन्ज़िल ऐल्कोहॉल में
 - (iii) प्रोपैनोन को प्रोपीन में

2, 3

अथवा

- (a) निम्न यौगिकों की संरचनाएँ आरेखित कीजिए :
 - (i) 4-क्लोरोपेंटैन-2-ओन
 - (ii) p-नाइट्रोप्रोपिओफीनोन
- (b) यौगिकों के निम्न युग्मों में भिन्नता करने के लिए जाँचों को दीजिए :
 - (i) एथैनैल और प्रोपैनैल में
 - (ii) फीनॉल और बेन्ज़ोइक अम्ल में
 - (iii) बेन्ज़ैल्डिहाइड और ऐसीटोफीनोन में

2, 3

- (a) Write the IUPAC names of the following compounds:
 - (i) $CH_3CO(CH_2)_4CH_3$
 - (ii) Ph CH = CH CHO
- (b) Describe the following conversions in not more than two steps:
 - (i) Ethanol to 3-Hydroxybutanal
 - (ii) Benzoic acid to m-Nitrobenzyl alcohol
 - (iii) Propanone to Propene

OR

- (a) Draw the structures of the following compounds:
 - (i) 4-Chloropentan-2-one
 - (ii) p-Nitropropiophenone
- (b) Give tests to distinguish between the following pairs of compounds:
 - (i) Ethanal and Propanal
 - (ii) Phenol and Benzoic acid
 - (iii) Benzaldehyde and Acetophenone

56/1 12

CHEMISTRY MARKING SCHEME OUTSIDE DELHI -2014 SET -56/1

Marks

Qn Answers

QII	Allswers	Marks
1	Because of differential arrangement of particles in different directions	1
2	Emulsion – Liquid-liquid colloidal system	1/2
	Eg: milk, vanishing cream (or any other)	1/2
3	Collectors enhance the non-wettability of mineral particles	1/2
	Pine oil, fatty acids, xanthates (any one)	1/2
4	Because of low bond dissociation enthalpy and high electron gain enthalpy with negative sign of	1/2+1/2
	fluorine	
5	2-propanol / propan-2-ol	1
6	On heating with NaOH +I ₂ , propan – 2-one forms yellow ppt of iodoform whereas pentan-3-one	1
	does not.	
7	Homopolymer is fomed by repeating the same monomer unit whereas copolymer is formed by	1
	repeating two different monomers.	
8	The linkage between two amino acids i.e. – CO-NH – is known as peptide linkage.	1
9	Anode: $Zn(s) \longrightarrow Zn^{2+} + 2e^{-}$ Cathode: $MnO_2 + NH_4^{+} + e^{-} \longrightarrow MnO(OH) + NH_3$	1/2+1/2
	Due to the presence of ions in the over all reaction, its voltage decreases with time.	1
10	Rate of reaction increases with temperature.	1
	Rate of a reaction nearly doubles with 10^0 rise in temperature / graphical representation.	1
11	a) Ag with dil NaCN forms a complex i.e. [Ag(CN) ₂] which dissolves and is subsequently	1
	reduced by Zn to give sliver	
	b) Electrolytic refining – in this method impure metal is made to act as an anode and the pure	1
	metal as cathode in a suitable electrolytic bath containing soluble salt of the same matel.	
Get	More Learning Materials Here : CLICK HERE >>> Www.student	bro.in

	OR				
11	a) It is based on the principle that the impurities are more soluble in the melt than in the	1			
11					
	solid state of the metal.				
	b) In this, the metal is converted into its volatile compound which is then decomposed to	1			
	give pure metal.				
12	a) $5SO_2 + 2MnO_4^- + 2H_2O \rightarrow 5SO_4^{-2-} + 2Mn^{-2+} + 4H^+$	1			
	b) $2F_2(g) + 2H_2O(l) \rightarrow 4H^+(aq) + 4F^-(aq) + O_2$	1			
13	a) Because it undergoes disproportionation reaction / $2Cu^{+}(aq) \rightarrow Cu(s) + Cu^{2+}(aq)$	1			
	b) Because of the ability of oxygen to form multiple bonds	1			
14	a) 3-bromoprop–1–ene / 3-bromopropene	1			
	b) Tris-(trichloromethyl)chloromethane	1			
15	An ambidient nucleophile is that which possesses two nucleophilic centres	1			
	For example CN ⁻ (it forms cyanides and isocyanides) (or any other correct example)	1			
16	a) $C_6H_5NH_2 < C_6H_5N(CH_3)_2 < CH_3NH_2 < (C_2H_5)_2 NH$				
	b) $C_6H_5NH_2 > C_6H_5NHCH_3 > C_2H_5NH_2 > (C_2H_5)_2NH$				
17	a) On adding benzene diazonium chloride, aniline forms azo dye whereas ethylamine does 1				
	not.				
	b) On adding benzene diazonium chloride, aniline forms azo dye whereas benzylamine does	1			
	not.				
18	$CH = CH_2$	1/2+ 1/2			
	a) 1.3 - Butadiene and styrene / 1, 3-Butadiene Styrene				
	a) 1,3 - Butadiene and styrene / 1, 3-Butadiene Styrene				
	b) Hexamethylenediamine and adipic acid / nHOOC(CH ₂) ₄ COOH + n H ₂ N (CH ₂) ₆ NH ₂	1/2+ 1/2			

19	$N_A = \frac{Z \times M}{a^3 \times d}$	1
	$= \frac{2 \times 56 \text{g mol}^{-1}}{(2.866 \times 10^{-8})^{-3} \text{cm} \times 7.874 \text{g cm}^{-3}}$	1
		1
	$= 6.04 \times 10^{23} \text{ mol}^{-1}$	1
	Or	
	$286.65 \times 10^{-10} \text{cm} = 2.866 \times 10^{-8} \text{cm}$	11/2
	Mass of Fe atom = $(2.866 \times 10^{-8} \text{cm})^3 \times 7.874 \text{g cm}^{-3} \times 1/2 = 23.54 \times 10^{-24} \times 3.94 \text{ g} = 92.59 \times 10^{-24} \text{ g}$	
	$N_A = 56g \text{ mol}^{-1}/92.59 \times 10^{-24} \text{g}$	
	$= 6.04 \times 10^{23} \text{ mol}^{-1}$	11/2
20	R=200Ω	
	Cell constant = $\frac{1}{a} = 1 \text{cm}^{-1}$	
	Conductivity, $k = \frac{1}{R} \times \frac{1}{a} = \frac{1}{200\Omega} \times cm^{-1}$	
	$= 5.0 \times 10^{-3} \Omega^{-1} \text{ cm}^{-1}$	1
	$^{\wedge} = \frac{K(Scm^{-1}) \times (1000 \text{ cm}^{3}\text{L}-1)}{C(mol^{-1})}$	
	$= \frac{(5.0 \times 10^{-3} \text{Scm}^{-1}) (1000 \text{cm}^3 \text{L}^{-1})}{0.01 \text{mol L}^{-1}}$	1
	$= 500 \text{ Scm}^2 \text{ mol}^{-1}$	
	- 500 Sem mor	1
21	$\text{Log}\frac{k_2}{k_1} = \frac{Ea}{2.303R}\left[\frac{1}{T_1} - \frac{1}{T_2}\right]$	1
	$\operatorname{Log} \frac{2.39 \times 10^{-7} \text{L/(mol.s)}}{2.15 \times 10^{-8} \text{L/(mol.s)}} = \frac{\text{Ea}}{2.303 \times 8.314 \times 10^{-3} \text{ kJ/Kmol}} \left[\frac{1}{650K} - \frac{1}{700K} \right]$	1
	$Log 11.12 = \frac{Ea}{2.303x8.314x10^{-3} \text{ kJ}} \times \frac{700-650}{4.5x10^{5}}$	1
	$1.046 = \frac{\text{Ea}}{2.303 \times 8.314 \times 10^{-3} \text{ kJ}} \times \frac{700-650}{4.5 \times 10^{5}}$	
	$Ea = \frac{1.046x2.303x8.314x10^2x4.5}{50} = 180.16kJ$	

22	Effect of temperature- physisorption decreases with increase of temperature and	1						
	chemisorption first increases then decreases with increase of temperature							
	Surface area – greater the surface area greater is the physisorption and chemisorption							
	In physisorption, no appreciable activation energy is needed. In chemisorption, sometimes 1							
	high activation energy is needed.							
	OR							
	OK							
22	(i) Production of high vacuum: The remaining traces of air can be adsorbed by charcoal	1						
	from a vessel evacuated by a vacuum pump to give a very high vacuum.							
	(ii) Heterogeneous catalysis: Adsorption of reactants on the solid surface of the catalysts	1						
	increases the rate of reaction.							
	(iii) Froth floatation process: A low grade sulphide ore is concentrated by separating it							
	from silica and other earthy matter by this method using pine oil and frothing agent	1						
23	a) Due to incomplete filling of d-orbitals	1						
23	a) Due to incomplete fining of d-orbitals	1						
	b) Because energy released in the formation of bond between Co(III) and ligand is more than	1						
	the energy required for the conversion of Co(II) to Co(III).							
	c) Due to comparable energies of 5f, 6d, 7s orbitals	1						
24	a) Trioxalatocobaltate(III)	1/2+1/2						
		1/2+1/2						
	b) Hexacarbonylchromium(0)							
	co co co							

	c) Trichloridoetheneplatinum(IV)	1/2+1/2
	Cl	
	CI /	
25	i)	1
	OH NaOH (i) CO ₂ (ii) H' 2-Hydroxybenzoic acid (Salicylic acid)	
	ii)	1
	$\begin{array}{c c} OH & \hline O & Na^{+} & \hline O & Na^{+} & \hline OH & \hline CHCl_{3} + aq & NaOH & \hline OH & \hline CHCl_{2} & \hline NaOH & \hline CHO & \hline M^{+} & \hline MaOH & \hline MaoH$	
	iii) $R-X+R'-\ddot{Q}Na\longrightarrow R-\ddot{Q}-R'+NaX$	1
26	The amino acids, which can be synthesised in the body, are known as nonessential amino acids.	1+1/2
	for example: glycine, alanine (or any other)	
	The amino acids which cannot be synthesised in the body and must be obtained through diet, are	1+1/2
	known as essential amino acids for example :valine, leucine (or any other)	
27	a) Drugs usually interact with biomolecules such as carbohydrates, lipids, proteins and	1
2,		
	nucleic acids. These are called target molecules or drug targets which possess some	
	common structural features, that may have same mechanism of action on target.	
	b) Food preservatives prevent spoilage of food due to microbial growth. For example table	1
	salt / sugar / vegetable oils / sodium benzoate (any one)	
	c) Non-ionic detergents do not contain any ion in their constitution. One such detergent is	

Get More Learning Materials Here :

\tag www.studentbro.in

28	a)	
	i - Normal molar mass Abnormal molar mass Observed colligative property	
	= Observed colligative property Calculated colligative property	1
	t - Total number of moles of particles after association/dissociation Number of moles of particles before association/dissociation (any one)	1
	 i) For dissociation, i > 1 ii) For association, i < 1 b) Reaction 	1/ ₂ 1/ ₂
	$Na_2CO_3 + 2HC1 \longrightarrow 2NaC1 + H_2O + CO_2$ 106g $NaHCO_3 + HC1 \longrightarrow NaC1 + H_2O + CO_2$ 84g	
	A mixture of 1 mol Na ₂ CO ₃ and 1 mol NaHCO ₃ reacts with 3 mol of HCl	
	1 mol Na_2CO_3 and 1 mol $NaHCO_3 = 106+84 = 190 g$	
	190g mixture reacts completely with 3 mol HCl	
	Mol of HCl that will reacts with 1g =	
	$\frac{3 mol}{190 g} \times 1g = \frac{3}{190} \text{mol} = 3x \frac{3x 10^3}{190} \text{m mol}$	
	We know that	11/2
	Morality x volume (ml) = no. of m mole	172
	$0.1 \times V_{HCl} = \frac{3x10^3}{190}$	1/2
	$V_{HCl} = \frac{3x10^3}{190x0.1} = 157.9 \text{ mL}$	1
	OR	
28	a) i) It is defined as the number of moles of the component to the total number of moles of all	1
	the components /	
	Mole fraction of a component =	
	Number of moles of the component Total number of moles of all the components	
	ii) It is defined as the number of moles of the solute per kg of the solvent. /	1

	Molality (m) = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$	1
	iii) According to Raoult's law, the partial pressure of a volatile component or gas is directly proportional to its mole fraction in solution	
	b) Molar mass Na ₂ SO ₄ .10H ₂ O =2x23+32+16x4+20x1+16x10 =322g mol ⁻¹ No. of mol Na ₂ SO ₄ .10H ₂ O dissolved in 01.10kg of water	
	$= \frac{6.00 g}{322 g mol^{-1}} = \frac{6}{322} \text{mol}$	1/2
	Since there is complete dissociation, van't Hoff factor, i= 3 $\Delta T_f = i K_f m = i x K_f x n_b/w_A$	1
	$= \frac{3x (1.86 \text{K kg mol}) \times \frac{6}{322} \text{mol}}{0.10 \text{ kg}} = 1.04 \text{ K}$	1/2
29	Freezing point 273.15K -1.04K = 272.1K a) i) XeF_2 - linear	1/2+1/2
	ii) XeO ₃ - pyramidal	1/2+1/2
	b) i) Because sulphur is sterically protected by six F atoms	1
	ii) Bond dissociation enthalpy of F_2 is lower than that of Cl_2 involved in the process.	1
	iii) Bond dissociation enthalpy of HCl is lower than that of HF	1
	OR	
29		
	a) $N_2 + 3H_2 \rightleftharpoons 2NH_3$ Haber's process	1/2
	Catalyst –iron oxide + K_2O + Al_2O_3	1/2
	Conditions: low temperature / 700 K and high pressure	1/2+ 1/2
	b) i) Bond dissociation enthalpy of S-H bond is lower than that of O-H bond.	1
	ii) Due to small size of N than P, lone pair is readily available for donation in NH ₃	1
	whereas in PH ₃ lone pair is delocalized due to larger size of P	
	iii) Because S-S single bond is stronger than O-O single bond.	1
1		1

30	a) i) Heptan – 2-one	1
	ii) 3-phenylprop–2en-1-al	1
	b) i) $CH_3 CH_2 OH \xrightarrow{[O]} CH_3 CHO \xrightarrow{OH^-} CH_3 - CH(OH) - CH_2 - CHO$	1
	ii) $COOH$ $COOH$ CH_2OH $COOH$ CH_2OH $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ OOH	1
	iii) $CH_3COCH_3 \xrightarrow{\text{LiAlH}_4} CH_3CH(OH)CH_3 \xrightarrow{\text{Conc. } H_2SO_4} CH_3-CH=CH_2$	1
	(or any other correct method)	
	OR	
30	a) i) CH ₃ -CO-CH ₂ -CH(Cl)-CH ₃	1
	ii)	
	CO-CH ₂ CH ₃	1
	b) i) On heating with NaOH +I ₂ , ethanal forms yellow ppt of iodoform whereas propanal does not.	1
	ii) Phenol gives red or violet ppt. with neutral FeCl ₃ whereas benzoic acid does not (or any other test)	1
	iii)Acetophenone- On heating with NaOH +I ₂ , forms yellow ppt of iodoform whereas	1
	Benzaldehyde does not (or any other test)	
Sr. No.	Name Sr. Name No.	

110.			110.		
1	Dr. (Mrs.) Sangeeta Bhatia		4	Sh. S.K. Munjal	
2	Dr. K.N. Uppadhya		5	Sh. Rakesh Dhawan	
3	Sh. D.A. Mishra		6	Ms. Garima Bhutani	
Get More Learning Materials Here :		CLICK	HERE (>)	www.studentbro.in	